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Lorentz and Orientation Factors in Fiber X-ray Diffraction Analysis 
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The application of a general formulation of the Lorentz factor for any distribution of crystallite orien- 
tations to a uniaxial fiber structure reveals that current practice, which involves the use of a standard 
single-crystal rotation factor, is inadequate. An analysis is plesented which eliminates the need for a 
detailed knowledge of the distribution function and which can be applied to measured peak intensities. 
The resulting expressions significantly improved the agreement between sets of experimental test data. 

The Lorentz factor is applied to X-ray diffraction in- 
tensity data to account for the fact that not all sets of 
crystal planes have the same opportunity to diffract 
the incident beam. The form the factor takes depends 
not only on the kinematics of the diffraction system 
but also upon the nature of the crystalline sample. For 

* Present address: Department of Molecular Biology and 
Biophysics, Yale University, New Haven, Connecticut 06520, 
U.S.A. 

single-crystal rotation techniques this geometric factor 
is a measure of the relative amount of time different 
sets of planes spend in the diffraction position or, al- 
ternatively, the relative amounts of time the corres- 
ponding reciprocal lattice points take in passing 
through the Ewald sphere. For stationary powder 
methods, it is simply the fractional number of recip- 
rocal lattice points which lie on the surface of the 
Ewald sphere. 
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Previous workers have recognized (Franklin & Gos- 
ling, 1953; Arnott, 1965) that the standard correction 
factors are inadequate when applied to partially ori- 
ented macromolecular structures. Nevertheless, it is a 
fact that the single-crystal rotation factor is typically 
applied to the data from such systems. The present 
analysis provides a formalism for deriving the Lorentz 
factor for any geometric distribution of crystallites in 
a polycrystalline sample. In particular, it is applied to 
the uniaxial orientation characteristic of fibrous macro- 
molecules. 

The general Lorentz factor 

It is required to derive a general expression for the 
Lorentz factor in terms of a distribution function char- 

acterizing crystallite orientations. An X-ray beam im- 
pinges upon a fiber tilted through an angle /l with 
respect to a plane normal to the beam; the sample is 
considered to be composed of a large number of well 
ordered crystallites with orientations given by f2(O, 0). 
In a given crystallite, 0 is the angle between the fiber 
axis and the unit normal, h, to the plane hkl. The den- 
sity function, f2(Q, 0), can then be defined as the frac- 
tional number of unit normals, fi, which lie in the unit 
solid angle at (Q, 0), where 0 is one-half the angle be- 
tween the incident beam and the diffracted beam (the 
scattering angle). For a given orientation, the intensity 
of radiation, Is, scattered into a detector of area S 
from an incident beam, I0, by a set o fp  parallel planes 
a distance t apart (Fig. 1), is given by: 

incident, beam 

Fig. 1. Scattering from a set of uniformly spaced parallel planes. 

fiber 

incident 
beam 

v 

Fig.2. Perspective diagram showing integration variables for 
calculation of general Lorentz factor; dl is the line element 
along the intersection of the cone of half angle O" with a 
unit sphere. 

where 

and 

Is = IoR(e) , (1) 

( N2t ~2 [ e 2 ~2 sin2(pBe) 
R(e) = JF[ 2 \ sin 0 ] \ -m~]  sin 2 (Be) 

B = 2nt cos 80/2. 

In these expressions, e = 0 - 0 0  is the deviation of the 
scattering angle from the Bragg angle, 00, and the 
symbols F, N, 2, e, c, and m have their usual meanings 
(James, 1962). 

The total energy, E, scattered into S by a given family 
of planes can be calculated by integrating the dif- 
fracted intensity, Is, from all crystallites over all scat- 
tering angles. This can be expressed as 

E= SIo I I R(e)f2(Q, O)dldO' , (2) 

where the contributions from individual crystallites 
are weighted by the orientation distribution function 
f2(Q, 0); the integration variable 0'  is simply the com- 
plement of 0 and l is defined in Fig. 2. 

Through a rather tedious transformation, the in- 
tegral can be expressed as a function of 0 and O, the 
variables of interest. In this form, 

P (, 
E=2SIo I 1R(e)f2(~, 0)T(Q, 0) cos 0 sin Q dQd0, (3) 

where 

T(#, 0) = [cos 2 0 cos 2 ¢ t -  (cos ~ + sin 0 sin/~)2]-~. 

Because the integrand contains the classical interfer- 
ence function in R(e), the integration over e can be 
effected through standard formalisms after the ap- 
propriate transformation of variables. In the resulting 
expression, 

( e2 ~2 pt 
E---I°N2)~3 \--m--~-f ] IFI2S sin 2 0 

x I f2(Q, 8)T(O, 8) sin odo,  (4) 
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it is now convenient to omit the subscript on the sym- 
bol for the Bragg angle. From Fig. 1 it is evident that 
Spt/sin 0 is the volume of the cylindrical element scat- 
tering into S. Calling this volume element dv and writ- 
ing in the usual polarization factor, p =½(1 +cos 2 20), 
to allow for unpolarized X-rays, the integrated inten- 
sity becomes 

{ e 2 ~2 pdv 
E= I°N2"]'3 \me  2 ] ]F12 sin 0 

i fz(u,o) 
x 0(0, 0)~(0, O) sin odo, (5) 

Ü f l(l.t,O) 

range in 0. Fig. 3 illustrates a distribution of unit nor- 
mals, fi, over an angular range of 2Ao centered about 
00, with a unit-normal density of zero outside this 
range. Rotation of this arc implies that -(2(0, 0) is in- 
dependent of 0 and is inversely proportional to the 
solid angle swept out by the spherical arc segment of 
height 2 sin Q0 sin A0. Thus, for a uniform distribution 
along Q, 

£2(0, O)= (4re sin Oo sin AO) -1 (8) 

and, after integration in (6) between the limits Oo-AO 
and Oo + AO, the Lorentz factor becomes 

/ cos 0 cos/.t + tan  0 tan [ ~ s  O ~ s ~  + tan  0 tan 
L ~  . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . .  

4re sin 0 sin Q0 sin AQ 
(9) 

where the limits on the integration depend on the dif- 
fraction geometry. The Lorentz factor, L, can be 
drawn from the angular dependent terms of the pre- 
ceding expression and is defined as 

1 I f~cu,o) 
L= sin0- ol, o,,o) K2(Q' 0)Tt(Q' 0) sin QdQ. (6) 

This is the desired formulation of the Lorentz factor 
in terms of a generalized distribution function and con- 
venient integration variables. Before introducing the 
distribution function for fiber structures it will be 
shown that this general expression for L yields the 
correct results for several well known cases. 

Random distribution 
In the case of randomly oriented crystallites, as 

would be found in a powder sample, the unit normals 
are uniformly distributed, and the distribution func- 
tion is independent of Q and 0. Thus, £2(0, 0) is simply 
equal to 1/(4re), the fractional number of unit normals 
per unit solid angle. It can readily be seen from Fig. 2 
that the appropriate integration limits are f1(/2, 0 )=  
0+/.t and ~(/2, 0 ) = z c - 0 + p ,  whence the Lorentz 
factor becomes: 

L =  1 I ~-°+u 1 
s l~-n-O Jo+u 4re ~(~' 0) sin ~d0. (7) 

Inserting the expression for 71(0, O) from equation (3) 
and performing the integration, one obtains L =  
(4 sin 0) -I, which is the well established Lorentz factor 
for powder samples. 

Single-crystal factors 
It is convenient to develop the expressions for single- 

crystal rotation factors from slightly more general 
forms based upon the rotation of reciprocal lattice 
vectors which are distributed over a small angular 

This expression can be specialized to the case of a 
single crystal by taking the limit as A0--~ 0, whence 
the distribution function corresponds to that for a 
rotating single crystal. This yields the equation 

1 
Lr°t=lim L=  T(Q, O) (10) 

zxo--~0 2re sin 0 

which can be cast into more familiar forms by the 
following elementary transformations (Buerger, 1960): 

4 sin 2 0 = ~2 + (sin v -  sin p)2 
sin v -  sin/z 

cos 0 = 2 sin 0 

sin 0 = 2 sin 0 

in which v is the angle between the generator of the 
nth layer line and the equatorial plane and ~ is the 
radial Bernal coordinate. The resulting expression, 

L r°t = [(~ + cos 12 + cos o) ( - ~ + cos/2 + cos o) 

(~ - cos // + cos o) (~ + cos /2 - cos o)] -4 , (11) 

is the established Lorentz factor for the general in- 
clination method. The normal-beam rotation factor is 
a special case of (11) with /2=0, and the zero level 
rotation factor involves the further specialization,/2 = o. 

Fiber orientation - a geometric approach 

An oriented macromolecular fiber can be described in 
terms of an axially symmetric function which char- 
acterizes the azimuthal distribution of crystallite orien- 
tations with respect to the fiber axis. In reciprocal 
space, this corresponds to a distribution of reciprocal 
lattice points on circular bands generated by the rota- 
tion around the fiber axis of spherical arc segments of 
angle 2A~. The intersection of such a circular band 
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with the Ewald sphere is shown in Fig. 3; the distribu- 
tion of reciprocal lattice points along the arc of inter- 
section depends upon f2(0, 0). The actual distribution 
function along 0 for a given system would be difficult 
to determine; one might suppose that a Gaussian func- 
tion would provide a good approximation. Dependence 
upon 0 would imply biaxial orientation and will not 
be considered here. For present purposes, it will be 
shown that the Lorentz factor corresponding to a 
hypothetical rectangular distribution along Q can be 
calculated from simple geometric arguments in recip- 
rocal space. In a later section it will be shown that the 
need for an exact knowledge of the distribution func- 
tion can be avoided in a more general treatment. 

The Lorentz factor is proportional to the ratio of 
the length of the arc which is the locus of the inter- 
section of the circular band with the Ewald sphere to 
the area of the circular band itself, the latter being 
multiplied by cos 0 to account for the finite thickness 
of the band and its oblique intersection with the sphere. 
A reasonably straightforward geometric calculation 
shows the arc length to be 

s = 2  sin 20 {sin -1 r .-c-°.~_(~.°---..~@) ] L cos 0 cos/t + tan 0 tan/z 

[cos( o+Ao) ]} 
-s in-1 [ c--osOcoslz + tan  Otan/t , (12) 

incident 
beam 

O ' \  

\~"2/  \& 

¢4", 

i I 

(/,~ fiber 

~ E w a l d  
sphere 

Fig.3. Intersection of a circular band of reciprocal lattice 
points with the Ewald sphere. 

and the area of the circular band is 4rco. 2 sin 00 sin AQ, 
where o'=2 sin 0 is the length of the reciprocal lattice 
vector. The ratio of these two quantities yields an ex- 
pression for the Lorentz factor which is identical to 
equation (9) which was derived from the general in- 
tegral formulation of L given in (6). 

This geometric approach is the one used by Arnott 
(1965) in his treatment of the problem. It should be 
noted that his expression for the arc length contains a 
slight error in the terms involving tan 0 in (12); how- 
ever his final expression for L was unaffected by this 
error. Of greater importance is the fact, unnoted in his 
report, that by taking the limit of L as AQ-+ 0 he 
simply derived a form of equation (11), the single- 
crystal rotation Lorentz factor. This fact was masked 
by the somewhat unusual form of his result but it can 
readily be demonstrated by appropriate substitutions.* 
Thus, it is clear that a more complete analysis of the 
problem based upon the generalized formulation of the 
Lorentz factor given in equation (6) is required. 

The use of peak intensities 

Evaluation of the desired quantities, ]F], from equa- 
tion (5) requires, in addition to a set of integrated in- 
tensities, a knowledge of the distribution function 
£2(0, 0). Integrated intensities are difficult to measure 
along the ill-defined arcs of variable length and the 
Lorentz factor associated with each element along the 
arc changes continuously. The distribution function 
could be deduced from the intensity variation along 
the arcs but only through an extensive series of careful 
measurements. It clearly would be of considerable 
value to be able to calculate corrected values of IF[ 
from measurements of the peak intensities at the cen- 
ters of the arcs; the following analysis shows that this 
can be done. 

The arc length on the Ewald sphere associated with 
a given reflection with an axially symmetric fiber dis- 
tribution function of angular range 2Ao is given by 
equation (12). The projected length of this arc from 
the center of the sphere depends upon the geometry of 
the recording system. For a cylindrical film and normal 
beam incidence, each arc is centered at 00 and extends 
+ AQ along lines of constant 0; the variation in length 
of such an arc across a film can readily be seen in the 
Q -  0 chart in Fig. 4. Since the apparent angular spread 
of the arc will depend upon the time of exposure it is 
necessary to relate the structure factor to an intensity 
measurement taken over a finite range at Q0. 

For a non-uniform distribution, equation (8) can be 
rewritten 

£2(0) = (4n sin 0o sin Ao)-ln(O-Oo), (13) 

where the function n(0-o0) describes the distribution 

* It should be noted that 0 and a in the present manuscript 
correspond to the symbols 0 and 0, respectively, in Arnott 
(1965). 
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of unit normals  along 0 in the circular band. This 
distribution can be divided into smaller bands of  an- 
gular spread 2fi0 with fi0 ~ AO, each centered about  0i 
as shown in Fig. 5. Then, 

f2t(0) = (4re sin O~ sin 5~o)-tn~(o-O~), (14) 

and the integrated intensity can be expressed as a sum 
of terms, each of the form of equation (5) and each 
containing f2~(0 ) from (14). 

If  fi~o is sufficiently small, it may be assumed that  
n~(o-O~) is a constant and, if the measurement  is 
made around 00 at the center of the band, the Lorentz 
factor is proport ional  to the expression in (9). More- 
over, if 60 is sufficiently small, the limiting process in 
which rio ~ 0 can be neglected so that  the integrated 

intensity in this angular  range at 00 becomes 

I0o = K[F[2pn(o-Oo)Lr°t(Oo ) . (15) 

In this expression Lr°t(00 ) is the usual rotat ion factor 
of equation (10) evaluated at 00 and n(O-Oo) is a con- 
stant for all reflections as long as intensity measure- 
ments are made at corresponding points (such as 00) 
along the distribution functions. The constant K is the 
collection of constants in equation (5). 

Thus, it appears that  single-crystal rotat ion factors 
can be applied to measured intensity data,  but it must 
be emphasized that  equation (15) applies only to meas- 
urements made over a constant  angular range, riO. 
This means that  a variable length of each reflection 
must be measured or, alternatively, appropriate  correc- 

so 4s 40 ~5  40 ~5 _._ .5o 

55 ~ . . v  50 - 45  4o  ] 3 5  4 0  4S 50  

Fig.4. Lines of constant 0 and constant 0 over the surface of a cylindrical film. 
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tion factors must be applied; the latter are developed 
in the following section. 

Arc correction factors 

If intensities are measured by traversing a section of 
each arc with a detector of fixed slit width, such as a 
microdensitometer or a scintillation counter, the an- 
gular range actually recorded will differ for each re- 
flection and will depend upon the direction of traversal 
and upon the diffraction geometry. Moreover, since 
the total length of each arc is indeterminate, the cor- 
rection factor which scales all arcs to the same angular 
range can only be determined on a relative basis. The 
arc length on the film (or at the counter) which cor- 
responds to a given AO can be calculated using equa- 
tion (12) and standard transformations relating film 
coordinates to reciprocal lattice coordinates (Buerger, 
1942). From such expressions, arc correction factors 
can be defined which are inversely proportional (in 
the limit as AO-+ 6Q--+ 0) to the angular spread in 0 
actually encompassed at each reflection by the small, 
fixed slit width. This turns out to be a surprisingly 
awkward procedure and yields complex transcendental 
expressions which are useful only in numerical analyses 
on a computer. The problem can be linearized to a very 
good approximation by using, instead, the limiting 
ratios of a simple function of arc chords. The results 
from such an analysis are summarized below in terms 
of reciprocal space coordinates for a number of ex- 
perimental situations. 

For normal-beam techniques, the structure factors 
are related to the peak intensities, integrated in the 
direction of scan, I~o0, by 

IFI2= -/5 He-°- (16) 
Lp 

where k is a collection of constants which becomes a 
scale factor and L is the single-crystal rotation Lorentz 
factor. For cylindrical films, F, the orientation correc- 
tion factor, is given by 

i b.e r 

Fig.5. Subdivision of the circular band of angular range 2Ao 
into sub-bands of angular range 2J0. The distribution func- 
tion -Q(0,0) is decomposed into the functions n(o-Od over 
2J0~. 

(2 J rr¢/2 
1 + 4 1 - (17) 

F -  (1 _~2)3/2 (2--0"2) 2 1 _2~ 

and for flat films, it is 

[1- F =  2 - 0"2 40-2 _ 0.4 j ( 1 8 )  

In these expressions, m = 0  if the peak intensity is in- 
tegrated along a path which is perpendicular to the 
fiber axis and m = 1 if the path is perpendicular to the 
arc at ~o0 (as would be true, for example, with a radial 
tracing on a flat film). 

For intensities that are measured by visual com- 
parison with a standardized series of reference arcs, 
these correction factors are applicable with m =  1 if 
(i) the reference arcs are placed parallel to the reflec- 
tion arcs and (ii) if the intensities are compared at ~0 
through a slit perpendicular to the arcs. 

It must be emphasized that the preceding analyses 
are applicable only to normal beam techniques. While 
additional data are often accessible by tilting the fiber, 
the correction factors become exceedingly complex and 
such data must be used cautiously, if at all, in structure 
refinement. 

An experimental test 

Diffraction data were obtained from a moderately well 
oriented polyethylene fiber with normal beam incidence 
in a cylindrical camera of 57.3 mm diameter. Three 
sets of photographs were taken with Co Kc~, Cu K~ and 
Cr K0c radiation; this ensured that each reflection re- 
quired a different Lorentz and arc correction factor 
for each radiation. The intensities of fourteen arcs were 
measured by tracking along the zero and first layer 
lines with a Joyce-Loebl Mark IIIC microdensitometer 
using a small slit aperture. Background corrections 
were applied, the peak intensities were integrated along 
the direction of scan and the three sets of data were 
correlated in pairs as follows: 

(i) After scaling the uncorrected data sets, a correla- 
tion factor, R = ZIIA- IBI/Z, IA, was calculated for 
each pair. 

(ii) Standard rotation Lp corrections were applied, 
the data sets were scaled in pairs and correlation 
factors were again calculated. 

(iii) The appropriate Lp and arc correction factors of 
equation (16) were applied, the data sets were 
scaled in pairs and correlation factors were re- 
calculated. 

The results of this analysis are reported in Table 1 
in which the last three columns correspond to the three 
comparisons described above. 

Although this limited array of data does not repre- 
sent a definitive test, it is clear that the agreement be- 
tween the data sets is significantly improved by the ap- 
plication of the proper correction factors. Moreover, 
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Table 1. Correlation factors, R, between data sets 
corrected as described in text 

(iii) 
(i) (ii) Data 

Data sets Data Data Lp equation (16) 
A B uncorrected corrected corrected 
Cu Co 0-12 0"19 0.10 
Cu Cr 0"55 0"67 0.23 
Co Cr 0.45 0"60 0.16 

since the magnitude of the correction required increases 
sharply for reflections at higher angles, the improved 
agreement achieved in the present case is particularly 
striking in that all of the data used were at relatively 
low angle. 

It is interesting to note that in all cases the agree- 
ment falls off markedly when only Lp corrections are 
applied, even in comparison with the results for un- 
corrected data. Unfortunately, it is precisely this cor- 
rection which is most often applied to fiber data. 

It is important to recognize that the functional form 
of the arc correction factor corresponds to a general 
reduction in intensity with increasing angle and layer 
line height analogous to, but significantly different 

from, the effect of a temperature factor. Neglect of 
the correction in a structure analysis not only results 
in abnormally high temperature factors and standard 
deviations, but also affects the final structure. This is 
particularly true in the analysis of macromolecular 
structures displaying packing disorders. 

The authors thank R. J. Fletterick for helpful dis- 
cussions and acknowledge the support of the National 
Institutes of Health under contracts No. GM 14832-02 
and No. 5 T01 GM 00334-07, as well as the Materials 
Science Center at Cornell University. 
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An analysis is given of the relation between the reduced cells defined by Niggli and the cells obtained by 
applying Buerger's algorithm. It is shown that in many instances a cell based on the shortest three non- 
coplanar translations must be transformed to obtain the reduced cell. The required transformations for 
all cases have been derived and are presented in this paper. 

Introduction 

In an important work on lattice geometry Niggli (1928) 
has pointed out that any crystal lattice can be re- 
presented by a positive ternary quadratic form. He has 
defined as reduced cell the cell that satisfies the condi- 
tions derived from the reduction theory of quadratic 
forms (Seeber, 1831; Dirichlet, 1850; Eisenstein, 1851). 
Such a cell provides a unique description of the lattice 
and is defined independently of lattice symmetry. In 
addition it must be primitive because one of the pro- 
perties is that it is built on the shortest three non- 
coplanar lattice translations. Niggli has derived geo- 
metrically the reduced forms for all the Bravais lattices 

but he has not given any general method for converting 
an arbitrary primitive cell into the reduced cell. 

The procedure given by Buerger (1957, 1960) and 
extended by Davis (1961) transforms any primitive cell 
into one based on the shortest three non-coplanar 
translations - the Buerger cell. This cell, although 
closely related to Niggli's reduced cell, is not unique in 
many cases. Some of the ambiguities associated with 
the Buerger cell have been discussed by Allmann 
(1968), especially in relation to the standard setting 
used by Donnay, Donnay, Cox, Kennard & King 
(1963) in the determinative listing oftriclinic substances. 

The algorithm proposed by Delaunay (1933) con- 
verts any primitive cell into a standard form involving 


